研究與教學
國際交流
榮耀分享
探索理院
活動報導
人事動態
第55期出刊日:2023.9.30
新進教師介紹

 

物理學系-藍邵宇副教授

學歷:
2009 喬治亞理工學院博士(美國)

經歷:
2022/09 – 2023/07 新加坡南洋理工大學 物理數學院 副教授
2023/01 – 2023/05 新加坡南洋理工大學物理數學院 助理院長
2013/09 – 2022/08 新加坡南洋理工大學物理數學院 南洋助理教授
2009/01 – 2013/07 美國加州大學柏克萊分校 博士後研究員

專長:
• 冷原子物理
• 物質波干涉儀
• 量子感測
• 量子計算

個人介紹:
我的研究主要聚焦於冷原子物理實驗,透過冷原子極高的可操控性,來深入探索量子物理的基本特性及其應用。其中一個核心議題是開發中空光晶格光纖的冷原子實驗平台,以實現微小化的物質波干涉儀,進一步提升基於量子物理的重力測量精確度,並開展嶄新的應用領域。在量子存儲方面,光纖提供了可擴展的平台,能夠增加原子的光密度,同時保持冷原子的低溫特性,這不僅實現高效率和長時間的存儲,同時還克服了自由空間平台所面臨的挑戰,極大地提升了量子網路和量子中繼器的效能。

近期,我們的團隊專注於研究光晶格中原子的量子控制現象,例如成功實現了原子在光晶格中的薛丁格貓態干涉實驗。此外,最近我們透過調控一維光晶格的電位突然變化,成功實現了量子壓縮態的快速生成。這是首次在實驗中證明了量子物理教科書中所提及的瞬時量子壓縮理論,此突破不僅克服了量子速度限制,更使得量子壓縮生成速率比過去的方法提升了三個數量級。未來,我們計劃在這個平台上演示連續變量量子計算的操控,包括雙模壓縮態、遙傳和密集編碼等。同時,我們亦計畫將這些成果進一步擴展並結合,研究基於三維光晶格中冷原子的三軸陀螺儀。我們的長遠目標是利用物質波代替光波,實現陀螺儀的小型化,並同時保持其靈敏度和靈活性。

 

物理學系-沈佳賢助理教授

學歷:
2017 PhD, California Institute of Technology
2009 BSc, National Taiwan University

經歷:
2023-now Assistant Professor, Department of Physics
2020-2023 Postdoc, University of California, San Diego
2020-2023 Postdoc, University of California, Los Angeles

專長:
• Applications of quantum field theory
• Gravitational waves
• Cosmology

個人介紹:
My research focuses on the novel applications of quantum field theory. Modern field-theory tools (such as scattering amplitudes and effective field theory) allow me to investigate systems from astrophysical scales (such as gravitational waves and cosmology) to sub-atomic scales (such as new particles beyond the Standard Model of particle physics). As a main example for the applications, I have achieved the state-of-the-art analytic solution to the inspiral of binary black holes. These new theoretical results are of interest to current and future gravitational-waves experiments.

 

物理學系-Daniel Baumann教授

學歷:
2008 PhD, Princeton University

經歷:
2023-now Professor, Department of Physics, National Taiwan University
2015-now Professor, Theoretical Cosmology, University of Amsterdam
2011-2015 Associate Professor (Reader), Cambridge University
2009-2011 Long-term Member, Institute for Advanced Study
2008-2009 Postdoctoral Researcher, Harvard University

專長:
• Cosmology
• High Energy Theory

 

化學系-王建隆教授

學歷:
2006-2011 艾克朗大學高分子科學系博士
1999-2001 國立臺灣大學化學系碩士
1995-1999 國立師範大學化學系學士

經歷:
2023/08- 迄今 國立臺灣大學 化學系 教授
2020/01-2023/07 國立陽明交通大學 應用化學系 副主任
2019/08-2023/07 國立陽明交通大學 應用化學系 教授
2015/08–2019/07 國立交通大學 應用化學系 副教授
2011/08–2015/07 國立交通大學 應用化學系 助理教授
2011/05-2011/08 艾克朗大學 高分子工程系 博士後研究

專長:
• 自組裝功能性材料
• 多尺度結構-性能關聯性
• 同步輻射微結構解析技術開發
• 水誘發自組裝與可型變超分子骨架

個人介紹:
在自組裝功能材料研究室 (Laboratory of self-assembly functional materials),我們整合了同步輻射X光繞射、單晶繞射、電子繞射和晶格模擬…等多尺度微結構解析工具,來解析合成物質的微觀(microscopic)與介觀(mesoscopic)自組裝結構。 並將所解析出來的結構訊息用以解釋新穎功能材料的結構-性能關聯性。 透過整合分子設計和微結構解析技術,探索自組裝功能材料的多尺度結構-性能關係,並開發複雜軟物質的新型自組裝機制是我們研究室的發展重點。

 

心理學系-曾祥非教授

學歷:
2010 加州大學聖塔克魯茲分校博士
2005 加州大學聖地牙哥分校學士

經歷:
2023/08-迄今 國立臺灣大學心理系 教授
2023/02 – 2023/08 國立成功大學 全校不分系學士學位學程 教授
2021/02 – 2023/01 臺北醫學大學 心智意識與腦科學研究所 教授
2015/04 – 2021/01 臺北醫學大學 心智意識與腦科學研究所 副教授
2011/08 – 2015/04 國立中央大學 認知神經科學研究所 博士後研究員
2010/07 – 2011/07 福斯汽車矽谷電子研究室 認知研究員

專長:
• 非侵入性腦電刺激
• 知覺、注意力與記憶
• 道德判斷
• 腦波測謊

個人介紹:
本人過去的研究著重於利用非侵入式腦刺激技術提升人們的認知功能,並結合腦造影技術探討該效果後的神經機制。過去的研究發現以短短15分鐘的微電刺激右後側頂葉區,可提升該腦區活化程度並使視覺短期記憶容量低於一般平均的族群在相關記憶表現暫時變好。近年來,我也嘗試將認知神經科學與司法鑑識、偵查科學做結合,目前在研究腦波測謊與目擊證人記憶好壞與鑑識相關研究。

 

地理環境資源學系-楊啟見助理教授

學歷:
2020 Ph.D., Tectonic and climatic processes on mudstone badland evolution in southwestern Taiwan, Geography, National Taiwan University.

經歷:
2021-2023 Scientist, German Research Centre for Geosciences, Potsdam.
2020-2021 Postdoctoral fellow, National Taiwan University.

個人介紹:
Before joining National Taiwan University, I worked as a scientist at the Helmholtz Centre Potsdam GFZ German Research Centre for Geosciences. Our mission is to advance the understanding of the dynamics of the Earth's solid interior and to devise solutions for major societal challenges. My current fields of interest focus primarily on Earth's surface processes and landforms. The main goal of my research is to provide relevant information on the dynamics of surface processes, comprehend natural hazards, mitigate related risks, and evaluate the human influence on the Earth system, thus enabling the interaction between geomorphic processes and Man. The current topics include the following: A. Landscape dynamics via on-site monitoring and numerical simulation. As far, we provide a framework to investigate how tectonic and climatic processes on mudstone badland evolution in southwestern Taiwan. The next part of the project aims at generating the spatially complete set of observational constraints on the global badland landscape. B. Ambient noise analyses on detection of surface processes. With this focus on the fluvial process within the active mountain, we apply an acoustic approach to bedload detection and characterization in mountain rivers. Specifically, overarching interests in this project: First, to raise a high-quality, long-term dataset on bedload dynamics and threshold of motion. This will be unique for the typhoon-dominated rivers of Taiwan and can be used to inform local hazard protection measures. Second, use this dataset to investigate how far the extreme conditions of Taiwan lead to similar or different behavior in temporal bedload dynamics in comparison to previous observations and models.

 

地理環境資源學系-Alessandro Crivellari助理教授

學歷:
2021 PhD in Applied Geoinformatics, Paris Lodron University of Salzburg (Salzburg, Austria).
2017 MSc in Biomedical Engineering, Politecnico di Milano (Milan, Italy).
2015 BSc in Biomedical Engineering, Politecnico di Milano (Milan, Italy).

經歷:
2021/08 – 2023/07 Postdoctoral Research Fellow, Department of Computer Science and Engineering, Southern University of Science and Technology (Shenzhen, China).
2021/05 – 2021/08 Postdoctoral Research Fellow, Geosocial Analytics Lab, Department of Geoinformatics, Paris Lodron University of Salzburg (Salzburg, Austria).
2020/03 – 2020/07 Research Intern, Prosus AI team, Prosus Group / Naspers Limited (Amsterdam, The Netherlands).
2017/03 – 2017/09 Visiting Researcher, University of Virginia Health System (Charlottesville, VA, USA).

專長:
• Geospatial Artificial Intelligence (GeoAI)
• Spatial Data Science
• Applied Geoinformatics

個人介紹:
I am a geospatial data scientist with theoretical and hands-on expertise in machine learning and deep learning methodologies, particularly directed (but not limited) to trajectory analysis, human mobility mining, time series forecasting, and geospatial image processing. My experience revolves around the use of artificial neural network architectures for predicting, assessing and retrieving information on how people move in space and time (research works in contexts of tourism modeling and individual motion traces), how space-time phenomena are expected to evolve (experiences in food delivery logistics and urban traffic management), and how human presence can be visually inferred geospatially (research studies in automatic object detection from remote sensing data).

The proposed research view is therefore inserted in a wide framework involving the exploration of AI tools within the geographic domain. Following the expanding success of application-oriented data-driven solutions, the purpose is directed towards an extensive investigation of the potential feasibility of state-of-the-art AI methodologies in the context of space-time analytics, leading to novel findings that better clarify a possible successful adaptability of neural network solutions into the world of geographic information systems.

The research perspective targets the development of artificial systems that are able to automatically learn space-time information without the need of explicitly defining analytical rules, therefore without leveraging any manual feature extraction or human knowledge assistance. In this sense, particular success can be achieved when targeting natural and human phenomena characterized by a limited prior knowledge of the underlying geospatial patterns and processes.

The prominent interdisciplinary motivation, at the confluence of AI, data science and geographic information systems, aims to intelligently mining geo-information and uncovering hidden patterns for ultimately performing tasks within a variety of real-world applications.

It is my pleasure to join the College of Science and further develop my professional experience in a context of excellence, which inspires and motivates me to strive for more and more achievements.

 

海洋研究所-何珮綺助理教授

學歷:
2018 國立中央大學地球系統科學國際研究生博士學位學程

經歷:
2021-2023 日本東北大學 生命科學研究科 JSPS外國人特別研究員
2020-2021 國立臺灣海洋大學 海洋環境與生態研究所 博士後研究員
2018-2020 國立臺灣大學 海洋研究所 博士後研究員

專長:
• 生態元素比
• 水域食物網結構
• 浮游生物生態學

個人介紹:
浮游生物的初級與次級生產力為支持海洋食物網的基石,食物網中能量傳遞效率則是決定浮游生物生產力傳遞至高食階消費者如魚類的重要因子。過去淡水浮游生物掠食者-獵物互動之研究已發現生物元素比,特別是碳:氮:磷 (C:N:P) 的比例在掠食者與獵物間的差異強烈影響食階之間的能量傳遞效率,但仍欠缺海洋食物網中生物元素比對生產力影響之研究。我的興趣是海洋營養鹽與環境資源豐富度變化對海洋浮游生物元素比與其營養策略及體型大小關係的影響,並了解浮游生物體型分布與生物元素比如何改變海洋有光層浮游生物食物網結構、自營及異營生產力、以及能量傳遞效率。

 

海洋研究所-Brandon Michael Stephens助理教授

學歷:
Scripps Institution of Oceanography, PhD 2018

經歷:
University of California, Santa Barbara.
Assistant Project Scientist 2022-2023
University of California, Santa Barbara.
Postdoctoral Researcher 2018-2022

專長:
• Marine Biogeochemistry
• Microbial Ecology
• Carbon and Nitrogen Cycling

個人介紹:
Every other breath we take is thanks to oxygen produced by marine phytoplankton. The fate of carbon and other elements fixed into that marine planktonic biomass plays an important role in global carbon sequestration and nutrient cycling, though the potential influences on these cycles requires further investigation. One of the most important pathways for the fate of recent organic matter is via bacteria, which can respire up to half of newly fixed marine organic matter. As part of National Taiwan University’s Institute of Oceanography, my research will seek to constrain the role marine bacteria in influencing carbon and nutrient cycling, particularly as it pertains to future climate change and carbon sequestration potential. I will seek to contribute to this research topic by combining (1) the quantification of rates of organic matter utilization by bacteria, (2) the respiration potential of the microbial populations, (3) classifying the chemical composition of organic matter used by marine bacteria, and (4) to identify connections between the composition of the microbial community and the chemical composition of organic matter. By constraining both the rates and influences on the fate of marine organic matter we can better predict influences of a future warmer ocean on carbon and nutrient cycling.