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Identifying causal networks is important for effective policy and management recommendations on
climate, epidemiology, financial regulation, and much else. We introduce a method, based on nonlinear
state space reconstruction, that can distinguish causality from correlation. It extends to nonseparable
weakly connected dynamic systems (cases not covered by the current Granger causality paradigm).
The approach is illustrated both by simple models (where, in contrast to the real world, we know the
underlying equations/relations and so can check the validity of our method) and by application to real
ecological systems, including the controversial sardine-anchovy-temperature problem.

Identifying causality (1) in complex systems
can be difficult. Contradictions arise in many
scientific contexts where variables are posi-

tively coupled at some times but at other times
appear unrelated or even negatively coupled de-
pending on system state (movie S1). Baltic Sea
fisheries, for example, exhibit radically different
dynamic control regimes (top-down versus bottom-
up) depending on the threshold abundance of
planktivores, causing the correlations between fish
and zooplankton to change sign (2). Such state-
dependent behavior is a defining hallmark of com-
plex nonlinear systems (3, 4), and nonlinearity is
ubiquitous in nature (3–11).

Ephemeral or “mirage” correlations are common
in even the simplest nonlinear systems (7, 11–13),
such as shown in Fig. 1 for two coupled difference
equations that exhibit chaotic behavior (14):

X ðt þ 1Þ ¼ X ðtÞ½rx − rxX ðtÞ − bx,yY ðtÞ�
Y ðt þ 1Þ ¼ Y ðtÞ½ry − ryY ðtÞ − by,xX ðtÞ� ð1Þ

When this happens, variables thatmay be positively
coupled for long periods can spontaneously become
anticorrelated or decoupled; this can create prob-
lemswhen fittingmodels to observational data (15).

Although correlation is neither necessary nor
sufficient to establish causation, it remains deeply
ingrained in our heuristic thinking (8, 13, 16, 17).
Onemight conclude, for example, that the variables
in Fig. 1 have no causal relation because they are
uncorrelated. Obviously, lack of correlation does
not imply lack of causation. Because of this and for
reasons just given, the use of correlation to infer
causation is risky, especially as we come to recog-
nize that nonlinear dynamics are ubiquitous.

An alternative approach,Granger causality (GC)
(18), provides a framework that uses predictabil-
ity as opposed to correlation to identify causation
between time-series variables. GC is recognized
as the primary advance on the causation problem
since Berkeley (1).

Variable X is said to “Granger cause” Y if the
predictability ofY (in some idealizedmodel) declines
when X is removed from the universe of all possible
causative variables,U (18). The key requirement of
GC is separability, namely that information about
a causative factor is independently unique to that
variable (e.g., information about predator effects
is not contained in time series for the prey) and can
be removed by eliminating that variable from the
model. Separability is characteristic of purely sto-
chastic and linear systems, and GC can be useful
for detecting interactions between strongly coupled
(synchronized) variables in nonlinear systems. Sep-
arability reflects the view that systems can be under-
stood a piece at a time rather than as a whole.

However, asGranger (18) realized early on, this
approach may be problematic in deterministic set-
tings, especially in dynamic systems with weak to
moderate coupling. For example, GC gives ambig-
uous results for the system in Fig. 1 (see GC cal-
culations S1). This is because separability is not
satisfied in such systems,which, unlike the tradition
in economics and single-species fisheries manage-
ment, need to be considered as a whole. That is to
say, in deterministic dynamic systems (even noisy
ones), if X is a cause for Y, information about X
will be redundantly present in Y itself and cannot
formally be removed from U—a consequence of
Takens’ theorem (19, 20). To see this directly, we
note simply that Eq. 1 can be rewritten as a model
for Y(t + 1) in terms of Y(t) and Y(t – 1) (see box
S1 for a worked example). Therefore, information
about X(t) that is relevant to predicting Y is redun-
dant in this system and cannot be removed sim-
ply by eliminating X as an explicit variable. When
Granger’s definition is violated, GC calculations
are no longer valid, leaving the question of detect-
ing causation in such systems unanswered.

In addition to nonseparability, ecosystems differ
from the systems typically studied with Granger’s
approach in other important ways. First, in eco-

system dynamics, weak tomoderate coupling is the
norm. McCann (21) and others have developed a
strong case for the ubiquity of weak coupling in
ecological food webs and have demonstrated their
importance for system stability. Second, ecosystems
are typically subject to forcing by external driving
variables such as temperature, precipitation, and up-
welling [e.g., (6, 22)]. Because many species share
similar abiotic environments, this can lead to correla-
tions and apparent synchrony among noninteracting
species [e.g., the Moran effect (23)], complicat-
ing the task of sorting out the real interactions from
spurious correlations. It is therefore important in
ecology to have methods that (i) address nonsep-
arable systems, (ii) identify weakly coupled varia-
bles, and (iii) distinguish interactions among species
from the effects of shared driving variables.

Here,we examine an approach specifically aimed
at identifying causation in ecological time series. We
demonstrate the principles of our approach with sim-
ple model examples, showing that the method dis-
tinguishes species interactions from the effects of
shared driving variables. Finally, we apply themeth-
od to ecological data from experimental and field
studies, showinghow it distinguishes top-down from
bottom-up control in the classic Paramecium-
Didinium experiment and clarifies the ongoing de-
bate about the nature of interactions among sardine,
anchovy, and sea surface temperature in the Cali-
fornia Current ecosystem.

Our approach is not in competition with the
many effective methods that use GC (see sup-
plementary text); rather, it is specifically aimed at
a class of system not covered by GC. As verified
in GC calculations S1 to S5 and box S1, GC does
not apply to this class of system.

Dynamic causation and CCM. GC applies if
the world is purely stochastic. However, to the
extent that it is deterministic and dynamics are not
entirely random, there will be an underlying mani-
fold governing the dynamics (representing coher-
ent trajectories as opposed to a random tangle).

In dynamical systems theory, time-series variables
(say,X and Y ) are causally linked if they are from the
same dynamic system (4, 19, 20)—that is, they
share a common attractormanifoldM (movies S1 to
S3 illustrate this idea). Thismeans that each variable
can identify the state of the other (3, 19, 20, 24, 25)
(e.g., information about past prey populations canbe
recovered from the predator time series, and vice
versa). Additionally, when one variable X is a sto-
chastic environmental driver of a population varia-
ble Y, information about the states of X can be
recovered from Y, but not vice versa. For example,
fish time series can be used to estimateweather, but
not conversely. This runs counter to Granger’s
intuitive scheme (see explanation in box S1).

Our alternative approach, convergent crossmap-
ping (CCM), tests for causation by measuring the
extent to which the historical record of Yvalues can
reliably estimate states of X. This happens only ifX
is causally influencing Y. Inmore detail, CCM looks
for the signature of X in Y’s time series by seeing
whether there is a correspondence between the
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“library” of points in the attractor manifold built
from Y, MY , and points in the X manifold, MX,
where these two manifolds are constructed from
lagged coordinates of the time-series variables Y
and X, respectively (3, 19, 24) (movies S1 and S2).

Essentially, the idea is to see whether the time
indices of nearby points on the Y manifold can be
used to identify nearby points onMX. If so, then one
can use Y to estimate X and vice versa. This pro-
cedure is illustrated in Fig. 2 and movie S3, with
full technical details including an algorithm in (26).

Note that CCM is related to the general notion
of cross prediction (3, 25) but with important dif-
ferences. First, CCM estimates “states” across varia-
bles and does not forecast how the system “evolves”
on the manifold. This eliminates possible infor-
mation loss from chaotic dynamics (Lyapunov di-
vergence) and accommodates nondynamic (i.e.,
random) variables. More important, CCM involves
convergence, a key property that distinguishes cau-
sation from simple correlation. Convergence means
that cross-mapped estimates improve in estima-

tion skill with time-series length L (sample size
used to construct a library) (Fig. 3A, fig. S2, and
box S1). With more data, the trajectories defining
the attractor fill in, resulting in closer nearest neig-
hbors and declining estimation error (a higher cor-
relation coefficient) as L increases (Fig. 2). Thus,
CCM becomes a necessary condition for causation.
Indeed, failure to account for convergence explains
conflicting results reported in the literature with
related methods (supplementary text and fig. S5).

In practical applications, where shadowmanifolds
are low-dimensional approximations of the true
system, convergencewill be limited by observation-
al error, process noise, and time-series lengthL. Thus,
with limited or noisy field data, CCM is demon-
strated by predictability that increases with L (fig.
S3). See (26) for a discussion of data requirements.

Framework for identifying causation, case
(i) Bidirectional causality via functional coupling.
Bidirectional causality is analogous to the concept
of “feedback” between two time series described
by Granger (18) and is the primary case covered
by Takens (19). Simply put, if variables are mu-
tually coupled (e.g., predator and prey), they will
crossmap in both directions (Fig. 3A and fig. S1A).
Thus, each variable can be estimated from the other
(predator histories can estimate prey states). Figure
3B gives examples of the general case i.

Notice that as the strength of coupling increases,
information becomesmore distinct in the affected
variables. As a result, their manifolds will contain
stronger historical signatures of the causes. In
Fig. 1 (Eq. 1), for example, where by,x >> bx,y the
much stronger effect of species X on Y implies
faster convergence for predicting X than for Y
(Fig. 3A). Thus, all things equal, the relative skill
of cross mapping can indicate the relative strength
of causative effect (Fig. 3B).

Framework for identifying causation, case
(ii) Unidirectional causality. Here, species X in-
fluences the dynamics of Y, but Y has no effect on
X (Fig. 3C and fig. S1B). This describes an amensal
or commensal relationship, or where X represents
external environmental forcing.

Figure 3C examines the systemwhen bx,y = 0.
Notice that with moderately strong forcing from
X (via by,x), even though Y exerts no effect, there
may still be partial cross mapping of Yarising from
the contemporaneous dependence of Yon X. How-
ever, this statistical effect is not convergent (shown
by the asymptotic level curves with respect to L in
Fig. 3E).With extremely strong forcing, the intrinsic
dynamics of the forced variable become subordinate
to the forcing variable, leading to the well-studied
phenomenon of “synchrony” (27). The red plateau
in Fig. 3E shows that bidirectional convergence
can occur with strong forcing. Thus, strong forcing
(synchrony)must be ruled out forCCM tounequiv-
ocally imply bidirectional coupling, although it still
impliesmembership in a common dynamic system.

Transitivity. Notice that causation is transitive
(e.g., if foxes prey on rabbits, and rabbits eat grass,
then foxes and grass are causally linked). More for-
mally, X⇔ Y⇔ Z implies X⇔ Z, whether or not X
and Z interact directly. Similarly, for unidirectional
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X(t+1) = X(t) [3.8 - 3.8 X(t) -0.02 Y(t)]

Y(t+1) = Y(t) [3.5 - 3.5 Y(t) - 0.1 X(t)]

Fig. 1. Mirage correlations. (A toC) Three samples froma single run of a coupled two-species nonlinear logistic
difference system with chaotic dynamics. Variables X (blue) and Y (red) appear correlated in the first time
segment (A), anticorrelated in the second time segment (B), and lose all coherence in the third time segment (C)
with alternating interspersed periods of positive, negative, and zero correlation. Although the system is
deterministic and dynamically coupled, there is no long-term correlation (n = 1000, r = 0.0054, P = 0.864).

M

m(t) = [X(t),Y(t),Z(t)]

MX

x(t) = [X(t),X(t-τ),X(t-2τ)]

MY

y(t) = [Y(t),Y(t-τ),Y(t-2τ)]

Fig. 2. Convergent cross mapping (CCM) tests for correspondence between shadow manifolds. This example
based on the canonical Lorenz system (a coupled system in X, Y, and Z; eq. S7 without V) shows the attractor
manifold for the original system (M) and two shadowmanifolds,MX andMY, constructed using lagged-coordinate
embeddings of X and Y, respectively (lag= t). Because X and Y are dynamically coupled, points that are nearby on
MX (e.g., within the red ellipse) will correspond temporally to points that are nearby onMY (e.g., within the green
circle). That is, the points inside the red ellipse and green circle will have corresponding time indices (values for t).
This enables us to estimate states across manifolds using Y to estimate the state of X and vice versa using nearest
neighbors (3). With longer time series, the shadowmanifolds become denser and the neighborhoods (ellipses of
nearest neighbors) shrink, allowing more precise cross-map estimates (see movies S1 to S3).
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forcing,X⇒ Yand Y⇒ Z impliesX⇒ Z. Transitivity
provides the basis for extending CCM to larger inter-
action networks, enabling us to distinguish variables
that are coupled from those sharing a common driver.
This is illustrated with two model examples below.

Complex model examples: External forcing of
noncoupled variables. Consider the case where
two species, X and Y, do not interact but are both
driven by a common environmental variable Z
(example 1 schematic in Fig. 4A). This occurs com-
monly in ecological systems [the Moran effect
(23)] and remains problematic in studies of cau-
sation. Herewe expect no cross mapping between
species X and Y because there is no information
flowbetweenvariables; however, information about
the external forcing variable (Z) should still be
recoverable from X and Y.

In fisheries, for example, noninteracting popula-
tions with common peak recruitment years due to
favorable environmental conditions may be corre-
lated even though they do not interact. The simple
fisheries model in Fig. 4B illustrates this situation
(26), where although the significant cross-correlation
between species suggests that theymight be coupled,
cross mapping shows no evidence of convergence,
proving that they are not coupled. This shows that
CCM can distinguish true interaction from a simple
correlation produced by shared driving variables.

Figure 4C provides an interesting further illustra-
tion of the method with a more complex five-species
model [schematic in Fig. 4A, model details in (26)].
In this example, species 1, 2, and 3 represent a mu-
tually interacting guild that externally force species 4
and 5, whereas 4 and 5 do not influence any other
species. Species 1, 2, and 3 are akin to Z in the dis-
cussion above, with 4 and 5 akin to the externally
forced noncoupled pair X and Y. Figure 4C shows
that CCM is able to deduce the correct network of

interactions getting all bidirectional and unidirec-
tional links correct.

Real-world examples: Demonstration with
ecological data. Keep in mind that attractors
constructed from real data are approximations of
dynamics occurring in higher dimensions. Thus,
although observational error and process noise
will limit the level of convergence attainable,
low-dimensional approximations can still produce
significant cross-map estimates of causal effects.

Bidirectional causation in an experimental
predator-prey system. We apply the analysis to
time series from the classic experimental predator-
prey system, first studied in the 1920s by Gause
and later improved by Veilleux (28), involving
Didinium (predator) and Paramecium (prey)
[methodological details in (26)].

The results in Fig. 5A suggest bidirectional
coupling (case i), which accords with what is
known. Moreover, the higher level of skill in
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Fig. 3. Detecting causation with CCM. With convergence, the skill of cross-map esti-
mates, indicated by the correlation coefficient (r), increases with time-series (library)
length L. (A) CCM for Eq. 1, Fig. 1, where the effect of X on Y is stronger than in the
reverse: by,x > bx,y. Consequently, cross mapping X using MY converges faster than
cross mapping Y usingMX. (B) Summary of this effect for Eq. 1, L= 400. (C to E) When Y

(red) has no effect on X (blue) (i.e., bx,y= 0), (C) shows that cross mapping of Y usingMX fails; however, the cross map of X succeeds (D) because the time series for
Y contains information about the dynamics of X. (E) demonstrates nonconvergence of %Y(t) as a function of forcing strength when bx,y = 0. Convergence only
occurs as a special case if strong forcing causes the system to collapse dimensionality (dark red plateau at high by,x ), thus removing the dynamics of Y.
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Fig. 4. Model causal networks. (A) Schematics of causal networks: two base cases and two model
examples showing external forcing of noncoupled variables. (B) Cross-map results for example 1: external
forcing of noncoupled variables. Cross-correlation erroneously suggests that X and Y are interacting,
whereas cross mapping correctly shows that there is no interaction. (C) Cross-map results for the complex
five-species model example. All significant (P < 0.05) mappings are given and indicate that species 1, 2,
and 3 (the subsystem in the circle) all interact mutually (case i), but interact only asymmetrically as
external forcing variables with respect to 4 and 5 (case ii), which do not interact directly themselves.
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cross mapping Didinium from the Paramecium
time series than the reverse (Fig. 5B) suggests
that top-down control by the predator, Didinium,
is stronger than bottom-up control by the prey,
Paramecium. This finding is consistent with the
experimental protocol and illustrates asymmetrical
bidirectional coupling (case i).

Complex causation in the sardine-anchovy sys-
tem. Here, we examine the relationship among
Pacific sardine (Sardinops sagax) landings, north-
ern anchovy (Engraulis mordax) landings, and sea
surface temperature (SST) measured at Scripps
Pier and Newport Pier, California (Fig. 5C).

Competing hypotheses have been advanced
to explain the pattern of alternating dominance of
sardine and anchovy across global fisheries on
multidecadal time scales. Although the observed
reciprocal abundance levels (Fig. 5A) resonates
with ecological competition as an underlyingmech-
anism, global synchrony in sardine and anchovy
stanzas (29) suggests the operation of large-scale
environmental forcing coupled with species-specific
differences in optimal temperature levels. Recent
evidence of regime-like behavior in these systems
suggests the operation of nonlinear processes (10).

Similar to the global pattern, in California, 20th-
century landings of Pacific sardine and northern

anchovy show one population peaking when the
other is low.Whereas some (30) have hypothesized
that the species act in direct competition, others (31)
have argued that the species react differently to com-
mon large-scale environmental forcing. Moreover,
paleoecological time series based on fish scales pre-
served in the anoxic sediments of the Santa Barbara
basin revealed that the negative cross-correlation
witnessed in the 20th century disappears in these
longer time series (32). Correlation with environ-
mental factors has also been elusive. Jacobson
andMacCall (33) used two approaches, a general-
ized additive model and a linearized Ricker stock-
recruitment model with environmental terms, and
detected correlation between 3-year running aver-
ages of the Scripps Pier SST versus sardine re-
cruitment and spawning stock size. However, when
the analysis was expanded to include recent stock
assessments from 1992 to 2009, the relationships
vanished (34). Although there are many possible
explanations, such behavior is consistent with
nonlinear dynamics and mirage correlation.

We address this controversy using the same anal-
ytical protocol used for the Didinium-Paramecium
example (26). The results in Fig. 5D show no sig-
nificant cross-map signal between sardine and an-
chovy landings, indicating that sardines and anchovies

do not interact. In addition, as expected, there is no
detectable signature from either sardine or anchovy
in the temperature manifold; obviously, neither
sardines nor anchovies affect SST. However, there
is clear asymmetric CCM between sardines and
SST as well as between anchovies and SST (Fig.
5, E and F), meaning that temperature information
is encoded in both fishery time series. The recov-
erable temperature signature reveals aweak coupling
of temperature to sardines and anchovies. Thus, al-
though sardines and anchovies are not actually
interacting, they are weakly forced by a common
environmental driver, for which temperature is at
least a viable proxy. Note that because of transi-
tivity, temperature may be a proxy for a group of
driving variables (i.e., temperaturemay not be the
most proximate environmental driver). Our finding
that SSTinfluences sardine and anchovypopulation
size (Fig. 5, E and F) is consistent with earlier
findings of Jacobson andMacCall (33). Supporting
evidence with other fishery-independent data are
provided in the supplementary text (figs. S3 and S4).

Finally, it is important to note that the mea-
surable nonlinear coupling of temperature to sardine
stocks means that the effect of temperature varies
with system state. Therefore, contrary to the cur-
rent regulatory framework for sardines, a fixed
temperature index will not suffice for sound man-
agement decisions. Rather, a dynamic (state-
dependent) rule involving temperature is required.

Final remarks on nonseparability. One of
the fundamental ideas in this work is that when
causation is unilateral, X ⇒ Y (“X drives Y,” as in
case ii), then it is possible to estimate X from Y,
but not Y from X. This runs counter to intuition
(and GC), and suggests that if the weather drives
fish populations, for example, we can use fish to
estimate the weather but not conversely.

To further clarify how this works, consider
the two-species logistic model described earlier
(Eq. 1). We can recover the cross-map dynamics
algebraically by rearranging Eq. 1 to give expres-
sions for Y(t) and X(t), substituting these back
into Eq. 1, and solving for X(t) in terms of Y(t) and
Y(t – 1) (and conversely; see box S1).

In these expressions, the parameter bx,y governs
the sensitivity of X to changes in Y. As bx,y ap-
proaches 0, X drives Y unilaterally (case ii) and
the cross-map estimate of X remains well-behaved.
But the cross-map model for Y has a singularity
when bx,y = 0, meaning that cross mapping allows
the driver to be reconstructed from the driven var-
iable, but not the other way around (fish reflect
weather states, but not conversely).

Finally, because Eq. 1 (parameterized as in Fig.
1) can be algebraically rearranged as a model for
X(t + 1) purely in terms of X(t) and X(t – 1), the
information from Y becomes redundant and can
be removed without affecting our ability to pre-
dict X(t + 1). Thus, GC would conclude (incor-
rectly!) thatY does not causeX (GC calculation S1).

Summary. Despite the fundamental problems
raised in Berkeley’s 1710 A Treatise on Principles
of Human Knowledge (1), correlation remains the
analytical standard of modern science. This has be-
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Fig. 5. Detecting causation in real time series. (A) Abundance time series of Paramecium aurelia and
Didinium nasutum as reported in (28). (B) CCM of Paramecium and Didinium with increasing time-series
length L. The pattern suggests top-down predator control. (C) California landings of Pacific sardine
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that sardines and anchovies do not interact with each other and that both are forced by temperature.
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come more difficult to justify with increasing rec-
ognition that nonlinear dynamics are ubiquitous.
Apparent relationships among variables can switch
spontaneously in nonlinear systems as a result of
mirage correlations or a threshold change in re-
gime, and correlation can lead to incorrect and
contradictory hypotheses. Growing recognition of
the prevalence and importance of nonlinear behavior
calls for a better criterion for evaluating causation
where experimental manipulation is not possible.

Granger causality addresses Berkeley’s issues
with prediction rather than correlation as the cri-
terion for causation in time series. This idea assumes
that causes can be separated from effects, so that a
variable is identified as causative if prediction skill
declines when that variable is removed. This is pos-
sible in a purely stochastic world and is a powerful
idea for systems that can be studied as independent
pieces; however, it is not defined for all systems, and
in particular not for deterministic dynamic systems
(even noisy ones) where Takens’ theorem applies
(19, 20). To address this, we examine an approach
that exploits nonseparability by using CCM to test
for membership to a common dynamical system.
CCM is not a method competing with GC, but
deals with interdependence often found in ecolog-
ical studywhereGC is simply not applicable. Thus
it is not surprising that as a further check, the GC
calculations for all the model and real data exam-
ples considered in this work were largely unsuc-
cessful (table S2 and GC calculations S1 to S5).

Althoughmany empirical measures of species
interactions exist (e.g., inferring interaction proxies
from diet matrices), we suggest that causation in-
ferred from time-series information provides a
“bottom-line” picture of interactions that is more
direct than those possible with proxies. The ability

to resolve causal networks from their dynamical
behavior has implications for system identification
and ecosystem-basedmanagement, particularlywhere
it is important to know which species interact as a
group and need to be considered together. In re-
sourcemanagement, as elsewhere, accurate knowledge
of the causal network can be essential for avoiding
unforeseen consequences of regulatory actions.
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Biotinylated Rh(III) Complexes in
Engineered Streptavidin for Accelerated
Asymmetric C–H Activation
Todd K. Hyster,1,2 Livia Knörr,2 Thomas R. Ward,2* Tomislav Rovis1*

Enzymes provide an exquisitely tailored chiral environment to foster high catalytic activities and
selectivities, but their native structures are optimized for very specific biochemical transformations.
Designing a protein to accommodate a non-native transition metal complex can broaden the scope of
enzymatic transformations while raising the activity and selectivity of small-molecule catalysis. Here, we
report the creation of a bifunctional artificial metalloenzyme in which a glutamic acid or aspartic acid
residue engineered into streptavidin acts in concert with a docked biotinylated rhodium(III) complex to
enable catalytic asymmetric carbon-hydrogen (C–H) activation. The coupling of benzamides and alkenes
to access dihydroisoquinolones proceeds with up to nearly a 100-fold rate acceleration compared with the
activity of the isolated rhodium complex and enantiomeric ratios as high as 93:7.

Thanks to the advent of genetic engineer-
ing, enzymes are attracting increasing at-
tention as versatile synthetic tools, even

displacing established organometal-catalyzed
industrial processes (1). However, creating an
enzyme for an abiotic reaction from a noncat-

alytic scaffold remains a major challenge (2–5).
One class of strategies has relied on the incor-
poration of non-natural metal cofactors within
a protein scaffold to afford artificial metalloen-
zymes (6–9). The main focus in the area has been
improving the selectivity of the hybrid catalysts,
rather than reaction rates, which are, by and large,
dictated by the first coordination sphere interac-
tions around the metal (10–12). Among the var-
ious cofactor localization strategies (13, 14), the
biotin-(strept)avidin technology has proven ver-
satile: The geometry of the biotin-binding pocket
is ideally suited to accommodate organometallic
moieties, leaving enough room for substrate bind-
ing and activation (15–19).
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